Du 8 au 10 juillet 2019, quatre-vingt des meilleurs "data-scientists" du domaine du "mass transit" se sont réunis à Paris pour la cinquième édition de Transit Data.
J'ai pu assister à une partie de l'événement, que vous pouvez revivre en remontant le fil twitter et ai été impressionné par la qualité des participants et des présentations. Elles sont, cerise sur le gâteau, pour la plupart accessibles en ligne.
Après avoir relu ces présentations, je partage avec vous 6 tendances générales qui me semblent représentatives de l'ensemble, illustrées par quelques présentations :
- Une meilleure compréhension des comportements des voyageurs en particulier des critères de choix d’itinéraire en milieu urbain dense. Des comportements spécifiques comme le déni d’embarquement (boarding denial), les itinéraires "à rebours" (back riding ou reverse routing) ou les réactions en cas d’incident (fermeture de gares) font l'objet d'analyse quantitatives inédites et intéressantes. Voir par exemple : Understanding passenger path choice in congested metro networks: The case of reverse routing.
- Des analyses sur les couplages voyageurs/exploitation notamment autour des temps d’embarquement, ou des choix d’itinéraires en bus en fonction de l’information disponible ou d’incidents… Voir l’étude japonaise sur les liens entre perturbations des trains et affluences des voyageurs : Empirical Investigation of Fundamental Diagram for Urban Rail Transit by Using Commuter Rail Data in Tokyo …
- Un recours fréquents aux méthodes issues du « machine learning » au domaine de la mobilité. Il y a plusieurs exemples d'applications d'algorithmes de clustering dont une sur la vulnérabilité des gares aux perturbations et une sur la segmentation des voyageurs sur la base de leurs données de mobilité. J'ai apprécié la présentation de VEDECOM : Prediction of bus passenger flow using Machine Learning.
- Plusieurs études sur la multi-modalité autour des stations de transit ou en substitution du transit associant de nombreuses données dont des données météo ou événementielles… Voir notamment : Longitudinal modeling of the daily subway ridership in Montreal: What is the influence of alternative modes of transport ? (non disponible pour le moment).
- Moins de présentation sur les questions de tarification. Voir tout de même : Evaluating the impact of fare capping and guaranteed best fare policies with smart card data and Machine learning.
- Un intérêt pour les données ouvertes : GTFS, OSM… qui permettent de construire des benchmarks mondiaux Voir par exemple :Enhanced complex network representation of public transport for accessibility assessment based on General Transit Feed Specification data .
Je serai, bien sûr, heureux d'avoir vos commentaires sur la pertinence de ces tendances et de cette petite sélection... Et surtout, je remercie et félicite les auteurs des présentations, les membres du steering committee, les organisateurs et tout particulièrement Maguelonne Chandesris.